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EXISTENCE AND UNIQUENESS THEOREMS FOR THE
NEUTRON TRANSPORT EQUATION

Abstract

In an attempt to understand the conditions under which the neutron trans-

port equation bas solutions, and the properties of those solutions, a number of

existence and uniqueness theorems are proved. One finds that the properties of

the solution are closely related to the boundedness of the source as well as to

certain velocity-space integrals of the scattering kernel. Both time-dependent

and time-independent equations are considered as are also the time-dependent and

time-independent adjoint equations. Although only a very few of all possible

existence and uniqueness theorems for these equations are considered here, the

work may serve as a guide to the treatment of similar problems.
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I. Introduction

Various theorems concerning the existence and uniqueness of solution to

the neutron transport equation have appeared in the literature. For example,

Case (1) has proved uniqueness for the one-speed, time-dependent equation

under the assumption that the kernel is rotationally invariant. He has, in

addition, shown that under the same assumptions the solution of the time-

independent equation is unique if c(U), the mean number of neutrons emitted

per collision, is everywhere less than one. Olhoeft (2) hRs considered the

more general velocity-dependent case, and has shown, subject to the same

restriction on c, that a unique, integrable solution exists for the time-

independent equation. Davison (3) has made some rather general remarks con-

cerning existence and uniqueness for the time-dependent case, but has only

outlined the methods of proof and has actually said little about the restrictions

which must be imposed in order that the theorems be true.

Basically, the situation is the following: There are a number of pos-

sible restrictions which one can imagine might be applied to the cross-sections

and sources appearing in the neutron transport equation. For certain of these

restrictions it is possible to prove that continuous solutions exist; for other

sets of restrictions the solutions may not be continuous but still integrable

functions of one or more of the independent variables involved (i.e., position,

velocity, and [in the time-dependent case] time). For other restrictions, it

may be impossible to prove anything. We have investigated a large number of

possible restrictions which might reasonably be imposed upon the cross-sections



and sources, and investigated the existence of unique solutions for each case.

In this way, we have tried to bring some order into the chaos of "obvious"

or partially proved results which at the present exist in the literature.

In addition, we consider not only the transport equation but the time-

dependent and time-independent "adjoint equations," and investigate the suf-

ficient conditions that unique solutions exist for those equations. It turns

out that there are many cases in which existence and uniqueness theorems can

be proved for one or the other, but not both.

In Sec. II of this paper, we convert the transport and adjoint equations to

integral equations in the usual manner. Then, in Sec. III, we discuss the re-

strictions on the sources and cross-sections which will, for physical reasons,

be applied in all cases.

Then, in Secs. IV and V we consider various existence and uniqueness theorems

for the time-dependent transport and adjoint equations. In Sec. VI we consider

theorems for the time-independent equations (both transport and adjoint) and

finally, in Sec. VII, we discuss certain "by-products" of the theorems -- a

formula for the minimum critical size of a reactor and a proof that the time-

dependence of the solutions of the time-dependent equations must obey certain

restrictions.

We have made no attempt to be comprehensive in our treatment of the existence

and uniqueness problem. Indeed, one can imagine virtually an infinite number

of possible theorems similar to those which we prove. However, we have pre-

sented some of those which we feel have the most intrinsic interest and, in ad-

dition, demonstrate well the method of proof. In this way, if any of the
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conditions which we consider are not met in a particular problem, our work may

serve as a guide to the correct treatment.

II. The Integral Equation Formulation

A. The Transport Equations

The time-dependent transport equation is

. + v(s1'v+a(r,v))*(r,vt) = q(r,v,t)
6t

+Iv'a(rg'o)*(rv',t)d3v (la)

while, in the stationary limit, we have

v(i._+T(rv)),(rv) = q(r,v) +fv'a(r,v'-v)*(r,v')d3v' (lb)

Here * is the neutron angular density (i.e., the one-particle distribution function);

v = vO is the neutron velocity; a(r,v) is the total cross section, and the kernel

a(r,v'-v) is the cross section for a neutron of velocity v' to be emitted into d3 V

about v.

Eq. (1) may be converted into integral equations in the usual way, i.e., by

introducing the Green's function of the left hand side. This Green's function is

well known (4). We obtain for the integral equation equivalent to (la)

*(r,v,t) = Q(r,v,t) + dt'd3v'v'a(r-v(t-t'), v'Xv)

x *(r-v(t-tV),Y,t')exp_ , •rv•t)!d" (2a)
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where

t
Q(_r,v,t) - *(r-vt,. v, O)exp [ va(r-v(t-t'),v)d t]

+• d t' q(_.E-(t-t' ) ,,t' )exp va(_r-v(t-t"),v)d .. (2b)

Actually, we shall prove theorems involving the existence and uniqueness of

solutions Within a given volume of space V bounded by a surface S when the incoming

(or, in the case of the adjoint equations, the outgoing) angular distribution is

specified on S. The simplst way to modify Eq. (2) to describe this situation is

to define q(r,v,t), *(r,v,O), a(r,v), and a(r,v'+v) to vanish for r 4 V. Then

the specified incident angular distribution•j(rs,v,t) is replaced by a surface

source qs(rs,v,t) on S in the usual manner (_4).

qs(r~s,v,t) =v[_•.n-oj•i(rs,v,t), O-.no<D, t>O,

0 otherwise, (3 )

where no is the outward normal to S. Then Eq. (2) still applies (understanding

the redefinitions of q, *, a, and a(r,v',v) mentioned above) with an additional

term Qs added to Q, Eq. (2b) to account for the surface source:

4s Iv Is(_rs,V,t-R./v)exp •(r,r-Rsjj,v (4)
vs ,* -

Here a is the usual optical path

_ dsa(r-.S )(
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where Rs is the distance from r to the surface S along the direction -9 (See Fig.

i). Note: Rs = Rs(-,Q).

Fig. 1

Eq. (2), thus modified, is the general integral equation formulation of

the time dependent neutron transport problem with which we shall be concerned.

It is convenient to rewrite it in the somewhat more tractable form

*(r,v,t) = Q'(r,v,t) + K*r(rv,t), ( 6 a)

where K is the integral operator

Kf(r,v,t) = [dtIf d~rIf d3v'b(r'-r+v(t-t'))exp Fva(r-v(t-t"),v)dt]'

x v'a(r.',v'-*r)f(,r_,v1,t') ,(6b)

and-

Q'(r,v,t) - Q(r,v,t) + Qs(r,v,t) . (6c)

The integral equation formulation of the time-independent transport equation

(lb) is obtained in just the same way, i.e., by introducing the Green's function

of the left side of Eq. (lb). We obtain
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(_r,v) - Q'(r,v) + A$(r,v) , (7a)

where A is the integral operator

Af(r,v) dR r~ d r~pd'v'8(rt-r+RsI)exP a(rr,lvl va(rl,vt-v)f(rvf),(Tb)

Q(,<_(r,,v)exp Ia(rBrRs.,_f.l_•,_vj + '-''v>p [7r,r-c),.y. d, (7c)

and

(_r,v) = •v(r,v) . (7d)

Again we mention that the cross-sections and sources have been defined to vanish

for r +V (orfort <0).

B. The Adjoint Equations

The time dependent adjoint equation is defined to be

6t + v(-_l.V+(_r,vl))(r•,,t) = q(r,v,t)

+ vf d3vta(r,v+!' )i(r,_v'), (8a)

while the time-independent adjoint equation is

v(-a'V+c(r,v))•(r,+) = •(r,v) + d v'a(r,_v+v')j(rv') (8b)
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The adjoint of a solution of Eqs. (la, lb) will be taken to be the solution of

Eqs. (8a, 8b) subject to appropriate boundary conditions.

These boundary conditions are that the outgoing density on S, *r0(rsv't),

rather than the incoming, will be specified. As before we replace the boundary

conditions by a surface source

q5(rv~) =v[X*R0J[4,(rs,Z,t), a-no > 0, t > 0,

=0 otherwise . ( 9)

We now convert Eq (8) into integral equations just as for the case of trans-

port equations, obtaining for the time-dependent equation

JV(r,v,t) = Qt(r,v,t) + K*'(r,v t), (i.Oa)

where R is the integral operator

Rf(r,v,t) dt=dv dvbrlrvt-l x -[ E va(rtv(t-thI),v)d]

x a( r ',_vI )f,(r',V',tf), (10b)

and

4'(r lv,t) = ij(!r+vt,V,O)exp 11 v ~ ~ ~ - " ,~ t

+ 1 qs(rs,Z,t-is/v)exp [c(r~r+Raaq] (10c)
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As before cross-sections and the initial distributiorn are defined to vanish

for r 4. V. Also, Rs - k(ran) is the distance from r to the surface along the

direction +a2 (rather than along the direction -n as in the case of the transport

equation). See Fig. 2.

Rs

r

Fig. 2

For the time-independent adjoint equation we obtain similarly

j~r~v) ! '(r,v) + rj/(r,v) ,(11a)

where Ais defined by

.Af~rv d rd d~r v'~lrR~

ar(rI,v-vI)f(rr,v'), (11b)

and

+4 j(rj+T 11,) exp Ea(r, r+Rf2,yi) dR. (11c)



III. Basic Definitions and Assumptions

In all of our subsequent discussions we shall assume that the source functions

Q'(r,v,t) and Q'(r,v,t) as well as the cross-sections c(r,v'-v) and a(r,v) obey

certain physically reasonable conditions.

1. Q1 and Z' are positive for all values of their arguments.

2. Either Q' and Q' are bounded or they can be written as the product

of bounded functions multiplied by delta functions in one or more of

their arguments.

3. There exists a vo <w such that for IlI > vo, Q' and Q' vanish identi-

cally.

4. There exists a vj< - such that a(r,v'+v) = 0, for v > v' > vd.

Assumptions (3) and (4) permit us to avoid any difficulties that the infinite

range of the velocity variable might otherwise introduce since together they imply

that there are no neutrons present with speeds greater than vm = MaX(vo,Vi). Then

the integrals over v' in any of the integral equations can be written as

4vm
d3V, -9 LDW Vt2dvt (12)

These restrictions can actually be relaxed to some extent; we might assume that

Q' and Q' go to zero sufficiently rapidly as v + o that, if other restrictions

are obeyed, the infinite range of v need not cause any trouble. However, assump-

tions (3) and (4) are physically reasonable, and so we shall make no attempts to

relax them.
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5. o(r,v'.v) can be written in the form

Nir)oiv'v) (13)

where Ni(r) is bounded. (Actually Ni(K) represents a density of nuclei,

and ai is a microscopic cross-section, so we are merely assuming that

there are no infinite concentrations of atoms present in the systems

that we consider.)

6. The cross-section a(r,v) can be written in the same form:

a(rv) = •i(r)i(v) . (L4)

7. vai(v) is bounded. We expect ai(v) to be bounded except possibly

for v-0, in which case we admit ai(v)- 1/v.

8. ai(r,v), , ai(v) and ai(vl'v) are all positive.

9. The function

e(rv) fa(r,--')d3v' (15)
a(r,v)

is positive. This assumption is also physically reasonable, since

c(r,v) represents the mean number of neutrons emitted per collision.

We define a similar microscopic quantity gi(x) which is also bounded

fi(v) = fai(rý-')d3v' (16)

1i(0)
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We shall also have occasion to use two further functions,

c'(r,v) -- a(r,v1-v)d~v' (O.Ta)
a(r,v)

and

c"(r,v) Jv'c(rj'Pv)d 3 v' (17b)
a(r,v)

It may be noted that c' and c" may not always be bounded but they (like c)

are always positive. Similarly V ' functions

I aj(v'fv)dv'

and

() fvci(v'-v)d3v'
ai(v)

may not be bounded but, like gi(v), they are positive.

IV. The Time-Dependent Transport Equation'.

Bearing in mind the restrictions discussed in Sec. III, we consider now

various existence and uniqueness theorems for the time-dependent transport equation.

Theorem 1. Let Q'(r,v,t) be bounded. Then if c"(r,v) is bounded, a unique,

positive, and continuous solution to the time-dependent transport equation

exists.
11



We prove the theorem by constructing the Neumam series solution to Eq. (6)%

f(r,v,t) = ZDn(r,v,t) , (19)

n=o

where

,o(r,v,t) = Q'(r,v,t) , (20a)

and

Wn(r,v,t) = K*n-l(r,v,t) . (20b)

By hypothesis

o S *0o -M < 00 (21)

Furthermore

,,(r,v,t) = KQ'(r,v,t)

SMo"maxamax t (22)

Continuing the iteration we find

ntn
*n(r,-v,t) -4 M(C"max~max) n -- (23)

n!

Thus, the Neumannseries converges pointwise, and the theorem is proved. The fact

that *(r,v,t) is positive follows from the fact that every term in the series is

positive.
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Next, assume that c"(rv) is not bounded. Then we can state:

Theorem 2. Let Q'(r,v,t) be bounded. Then a unique, positive solution to

the transport equation exists which is a continuous function of t and r

and an integrable function of v.

Proof: The proof proceeds along the lines of Theorem 1; however, it is suf-

ficient to show that the series

Zfdv*n(r,v, t) (24)

n

converges pointwise. Consider first

t

fd3v*.(r,v,t) S M Jo dt'fv'dvIfd3va(r-v(t-t"),v'+v) . (25)

0

However, we have assumed in Sec. III that a(r,v'-*v) could be written in the form

a(rv'-*v) = Z'Ni(r)ai(v'-v) (26)

where the Ni(r) are bounded, say by Nio. Then

/d~v,,(r,v,t) ;5 Mt XNi~jv'd~v'gi(v')ci(v') •(27)

But ti(v') and ai(v') are assumed in Sec. III to be bounded, say by tio and

aio. Then

f d viI,(r,vt) S MtLNiotiooiofv'd~v' (28)

and since v' S Vm (cf. Sec. III), we have
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fd3vfi(rv,,t) 9 Kt , 0 9 K < . (29)

Similarly, we find

d 3 V*n(r,v,t) 9 Elf , 0 $ K' <® . (30)
n.

and the theorem is proved. Again each term is positive, so that the solution is

positive.

Next consider the case that Q'(r,v,t) is not bounded, but integrable. The

following theorems are simple to prove by straightforward construction of the

Neumamseries, as above.

Theorem 3. If Q'(r,v,t) = Qo(r,v)5(t), where Qo(r,v) is bounded, then,

for the time-dependent transport equation

(a) If c"(r,v) is bounded a unique, positive solution, *(r,v,t),

exists. *(r,v,t) is a continuous function of r and v, and

*(rv,,t)-Q'(r,v,t) is a continuous function of t.

(b) If c"(r,v) is not bounded, then the solution, i(rv,t), may be

an integrable rather than a continuous function of v. Otherwise

the conclusions are unchanged.

Theorem 4. If Q'(r,v,t) = Q,(r,t)5(v-Zo),where Q,(r,t) is bounded, then,

(a) If va(r,v'•v) is bounded, a unique, positive solution *(r,v,t)

exists. *(r,v,t) is a continuous function r and t, and *(r,v,t)-

Q'(r,v,t) is a continuous function of v.

14



(b) If va(r,v'.v_) is not bounded, then r(rv,t)-•(rv,t) may be an

integrable, rather than a continuous, function of v. (In proving

part (b) we make use of the fact (cf. Sec. III) that v and ti(v) have

both been assumed bounded.)

Theorem 5. If Q'(r,vt) = Q2 (v,t)8(r-jo),where Q•(r,t) is bounded, then

(a) If c"(r,v) is bounded, a positive, unique solution *(r,v,t)

exists. i(r,v,t) is a continuous function of v and t, and an integr-

able function of r.

(b) If c"(r,v) is not bounded, then *(r,v,t) may be an integrable

rather than a continuous function of v.

The theorems for the cases in which Q'(r,v,t) involves a delta function in

more than a single variable may easily be constructed by appropriately combining

the above theorems. We shall not state them separately.

V. The Time-Dependent "Adjoint" Equation

Here we deal with Eq. (10).

The theorems will all be stated without proof, since the proofs are completely

analogous to those given in the previous section.

Theorem 6. If Q'(K,v,t) is bounded, then a continuous, unique, positive

solution exists. (Note that in proving this theorem it is necessary tc

make use of the fact that c(r,v) is bounded (cf. Sec. III).)
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Theorem 7. If 4'(r,j,t) = Qo(r,v)5(t), where 4 is bounded, then a

unique, positive solution, jj(r,v,t) exists. i(r,v,t) is a continuous

function of r and v, and T(r,v,t)-Z'(r,vt) is a continuous function

of t.

Theorem 8. If ý'(r,vt) = 1 (_r,t)8(V-vo), where 1 is bounded, then

(a) If va(r,v'.v) is bounded, a unique positive solution, j(r,v,t)

exists. i(r,v,t) is a continuous function of r and t, and i(r,v,t)-

U'(r,v,t) is a continuous function of v.

(b) If va(r,v'.v) is unbounded but g'(r,v) is bounded, then the con-

ditions above hold except that i(rv,t)-ý1(rv,t) may be an integrable,

rather than a continuous, function of v.

Theorem 9. If 4t(r,v,t) = Q2 (v,t)5(r-ro), where 2 is bounded, then a

a unique, positive solution, j(rv,t), exists. i(r,vt) is a continuous

function of v and t, and an integrable function of r.

Again when 4' involves delta functions in more than a single variable, the

appropriate theorems can be constructed by appropriately combining the results

above, and so we shall avoid stating them explicitly.

VI. The Time-Independent Transport and Adjoint Equations

In certain rather restrictive cases, it can be proved that unique, positive

solutions of the time-independent transport and ajoint equations exist. In gen-

eral, the restrictions are much more severe than is the case for the time-dependent
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equations; we shall see later that this is to be expected.

Theorem 10. Let Q'(r,v) be bounded and positive. Then if c'(r,v) < 1, a

unique, positive, and continuous solution to the time-independent trans-

port equation (Eq. (7)) exists.

We note that the integral equation (7) differs from Eq. (lb) in that in the

former the dependent variable is the angular flux, O(r,v), rather than the angular

densit y(r,v). Thus all theorums which we shall prove involving the time-

independent transport equation may not apply to the angular density unless *(r,v)

vanishes sufficiently rapidly as v-o. This is not a real worry, since one is

generally interested in the flux rather than the angular density.

As usual, we prove the theorem by constructing the Neumnn series:

Zn~r~v) (31a)

with

(r,v)= Q(r,v) , (31b)

and

n(r = An(r,v) A-n.l(r,v) • (31c)

By hypothesis, 0o(r,v) is bounded and positive:

o N o(r,_v) SM < w. (32)

17



Next assume *n..(r,v) is bounded by M', say. Then

*n(rv) = A~n..(r,v)

5 M' c'maxJ d~exp [aCj~r,_r-RS1,v] a~r-Rn,_v) (.3

The integral is easily shown to be equal to unity. Thus

40n(r,v) 9 M'c'MAX <M1 , (34)

since we have assumed c'(r,v) < 1. 7his proves the theorem since the Neumannseries

converges pointwise, and each term is seen to be positive.

The next theorem is readily proved in essentially the same manner.

Theorem 11. If Q'(r,v) = Qj(r,v)5(V-Vo), where Qj(r) is bounded, then

if c'(r,v) < 1 and a(r,vo-*v) is bounded, a unique, positive solution, *(r,v),

exists. *(r,v) is a continuous function of r and *(r,v)-Q'(r,v) is a

continuous function of v.

Theorem 12. If a(r,v)Q'(r,v) is integrable, then if c(r,v) < 1, a unique,

positive, integrable solution exists.

This is the theorem proved by Olhoeft (2). The procedure is to construct the

Neumamseries for the collision density X(r,v) defined by

X(_r,j) =a(_r,j)O(_r,v) ,(

and prove that

18
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f d3 vd3rKXn(!(,) I Jedrd'vXn(rV) (35)

Since the details are given in Ref. 2, they will be omitted here.

We next turn our attention to the time-independent adjoint equation. Here

the theorems are quite analogous to theorems 10-12 proved for the transport

equation, except that the roles of c and c' are reversed. Since the proofs are

so similar, we simply state the theorems.

Theorem 13. Let • •'(rv) be bounded and positive. Then if c(r,v) < 1,

a unique, positive, continuous solution exists to the time-independent

adjoint equation.

Theorem 14. Let 4 Q'(r,v) = Q1 (r)5(v-vo), where Qj(r) is bounded and
v

positive. Then if q(r,y) < 1 and o(,,Vro) is bounded, a unique, positive

solution, j(j,X), exists. ý(r,v) is a continuous function of r and

1- is a continuous function of v.

Theorem 15. If c'(r,v) < 1, and if a o(r,v)ý'(r,v) is integrable, then a
v

unique, positive, integrable solution exists.

Note that in each of these theorems we have placed restrictions on -41

v

rather than on Q'. If we make the reasonable assumption that no zero-energy

source neutrons are introduced into the system, then the conditions can equally

well be stated as conditions on Q'rather than on 1 Q'.
v

Next we prove a uniqueness theorem for cases in which existence has not been

proved.

19



2
Theorem 16. If a solution of class L of the time-independent adjoint equa-

tion exists, then an L2 solution to the time-independent transport equation,

if it exists, will be unique.

We sketch the proof: Suppose there are two solutions to the transport equation,

and *2" Then • *1-2 obeys the equation

v(_•'v+a(r,v) )*(r,v) = J v'a(r,v#+.)•(r,vt )d~v', (7S(37)

with

(rs,j)= 0, _' no <0. (38)

Consider the adjoint equation with zero outgoing angular density.

v(-s1v+o(r,v))j,v) j(= r,v) + va(r,v-*v'(r,v')d 3v, (39)

i(rlv) = , i,_no >0 • (4o)

(We have hypothesized that such a solution exists. ) If we now multiply Eq. (37) by

*(r,v), and multiply Eq. (39) by *(r,v), subtract and integrate over r and v we

obtain

J• d*jdS.no*(.rEv)(r,v) = I dVrj d3vi d3v 'v ' (r,v 'v

x •_ -M ,)

]jd3rf d~v]d3v 'va(i•,V+!v')*(r,v' )4(r~v)

- d3rf d v*(r,v)q(r,v) (41)

20.



The left hand side of this equation has been obtained with the help of Gauss's

Theorem,and by virture of Eqs. (38) and ý0), it vanishes. Similarly, the first

two terms on the right side of Eq. (41) cancel, and we obtain

f d'rjd~v*(,y)j(•,y) = 0 . (42)

Since i(r,v) is arbitrary (and positive) it follows that

o0, (43)

proving the theorem.

We note that the conditions of this theorem are satisfied for (among other

cases) c(r,v) < 1; thus, Eq. (39) can posess no solution for c(E,v) < 1 subject

to the boundary conditions (38). Since these are precisely the equations satisfied

by the neutron density in a reactor, we have succeeded in proving, as a by-product,

the not surppising result that a reactor cannot be critical if fewer neutrons are

emitted than absorbed following each collision (c < 1). A simpler proof of this

theorem (and of the following theorem) for the case that only scattering and pure

absorption are present, (i.e., no fission) is given in the Appendix.

The analog of Theorem (16) is:

ThAorem 17. If an L2 solution of the time-independent transport equation

exists, then an L2 solution of the time-independent adjoint equation, if

it exists, will be unique.

The proof of this theorem is essentially identical with that of Theorem 16.

The implication of this theorem is that a reactor cannot be critical if c'(r,v) < 1.

21-



This can be seen from a slight modification of the arguments used above to show the

same result for c(r,v) < i.

VII. Some Miscellaneous Results

In the previous section we have pointed out that the uniqueness of the time-

independent solution is equivalent to the statement that a reactor cannot be critical.

Thus we have shown (Theorem 16) that no reactor can be critical for c(r,v) < 1,

which is, of course, physically obvious. However, such a condition is somewhat too

stringent since it is clear that for a system of finite size neutron leakage may

prevent a reactor from becoming critical even for c somewhat larger than one.

We can obtain an estimate of the minimum value of c for which a reactor of a

given size will become critical from Theorem 12. The proof, which we omitted in

Sec. VI, involves the construction of the Neumann series solution to the following

integral equation for the collision density X r aO:

x(r,v) = aCr,,)Q'(rv)+7 Czv) , ( 4 4 a)

where X is the integral operator

S.... ..d..vdrv a(r' v' ) e

(44b)

In the proof, one shows that if

j devd3rxn(r,_v) M, (45s)
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that

if d~vd3rXn+l(rv) S CmaXM (45b)

Actually, a somewhat stronger condition holds, since from Eq. (44b) it follows im-

mediately that

fd3Vd3rAXna(r~) = f3rfdavfdav' (l-exp En(.,E+Rsg.,!] )U(r,v')
a(_r,v)

(46)

In obtaining (45b), the exponential in Eq. (46) was set equal to zero. If instead

we approximate Eq. (46) by the following expression

(l-e•T)-[a Xn(r,v')dardSv' ,(47)

we see that an approximate limit for the convergence of the Neuman series is

c < 1 T (48)
l-e "

Here _ is the average optical chord length of the system and a is the average value

of c(r,v).

This expression should give a rough estimate of critical size since one can

write

7- B , (49)

where ? is the average cross-section and I is the average chord length(-4V/8),
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The averages of c and a are taken both with respect to r and v.

A second result which follows from the theorems proved in the earlier section

is that the solution of the time-dependent transport or adjoint equations can in-

crease no faster than exponentially if the source is cf exponential order or less.

Consider first the transport equation. Let us write the source in the form

Q"(r,v,t) =' Q.(r,v)f(t) . (50)

For simplicity we shall assume that Q. and c" are bounded. Then we wish to examine

the time-dependence of the Neumann series, Eq. (19). Since Q. is bounded we have

s Mf(t) , (51)

t

S1( W .c"maxcmaxf tf(t)dt (52)

0

and in general

nL M(c maxamax) dtj dt 2 " tnf(tn)dtn (53)

Now from Euler's identify

°t .•tn'• ot (t-t'ni

fdt1 .. 4 tnf(tn)dtn = J f(t')dt' , (54)
0 "o = (n-1).•

we have

n

*n M(C,,maxcmax)nfMax t (55)n•

Thus
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S Mfmax (c11m=IFaxt)n (56)

nuo n.

or

S Mfmaxexp(c"max~maxt) (57)

Thus the time behavior of * is asymptotically given either by f(t) or by the

exponential eo"maxc~maxt, whichever is more important at large times.

If f(t) = eat, the integral in (54) can be evaluated explicitly.

In(t) e fdtt') w e0•'• e'aT~dT (58)Aot(n-1) et tt

Clearly

In(t) = ie ( t ) , (59)
aa- a

so that

"(C"f actmax)nl(-l) n-1 an - a

*n (n-l) ! 2,xn."--i ( • ) (60)

for n >0. Then

- ,, O t I ( m a m x) - ( _ , ) n a n ( , _ e -a t t ( )

* ~ M (l+c"maxCnmaxe_ n'
L ~n. a

n=o

or
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S SM (1+ Cmaxamx (e°t.eO"m2ct)) (62)
~cx Itmaxamax

where Taylor's theorem has been used to perform the sum. We note that this limit

is always positive.

A very similar argument can be used to delimit the time behavior of the

adjoint equation; we shall omit it here.
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Appendix

Theorems (16) and (17) may be proved in a different manner from that used in

the text if we assume that no mechanism is present for neutron regeneration other

than ordinary elastic and/or inelastic scattering. (We:.note that in this case

c(r,v) S 1.) In such a case, we expect that the kernel a(r,v'v) obeys the

principle of detailed balance

v'M(v')a(r,v'+v) = vM(v)c(r,v,-v') , (A-l)

since in the absence of sources and sinks of neutrons, an equilibrium should be

approached. The equilibrium spectrum, M(v), is the Maxwell-Boltzmann distribution

M(v) ~ v exp 1 -2 . (A-2

Consider now Eq. (37) of the text, with the boundary condition, Eq. (38).

Define a new dependent variable by the relation

t(r,v) = F(r,v)*(r,v) , (A-3)

where F(r,v) is some well-behaved but otherwise arbitrary function to be chosen

later. Then Eq. (37) becomes

v._ ! + v,•_ day,, (A-4)

with

) 0, a-no < . (A-5)
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(The function F must be chosen so that Eq. (A-5) is still satisfied.)

If Eq. (A-4) is multiplied by $(r,v) and integrated over r and v we obtain,

with the aid of Gauss's Theorem

S~2
2V + ~dr v d 3  *,vv $ (rv)

2 d F(rv) + orrvv F(rv)

Sffd~vd ,V''(r,'V,.ýv) $(rv)0(rv') (A-6)
F(r,v')

Next consider the identity

[$(r,v) -(r,v')]
2  a (A-7)

or

1222

*(r,v)O(rv') S [ (r,v) + O(r,v') . (A-8)

Then, by virture of (A-0, the right side of Eq. (A-6) may be written

ff d~vd~v'v'c(r,v?+--)(xx(.• s
d ~ ~ ~ ( 3g )dV ,a -V

1- ffdsVd3v,v, (,02(r,v) +$2(r,v, )1 (A-9)

F(r,v')

l d~v'v'o(r,v,')c(r,x,) 2 (r,v') + df 3.vd 3 v v, a(rv'4*v)02(r,v)
F(_r,v'.) VfF(r,v' ) --

(A-10)
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If we now choose F(r,v') - 1 , the second term on the right of Eq. (A-10)
M(v')

becomes

ifj dSvdSv'v'M(v')a(r,v '-v)O2 (r,v)

= -f d3vd3v IvM(v)a(r,vv9)42(r,v) (A-11)

by Eq. (A-1). This becomes, upon integration over v',

1 IdSWVM(V)C('ry) (X, y),V1(r,y) .(A-12)

writing M(v) for 1/F(.r,y) throughout Eq. (A-6), and using (A-9), (A-10), and (A-12),

we find

1 f~Jd ~3v11.V02 (r,v)M(v) + jd~rfd 3VVM(v)oa(r,v) 02 (r,v)

- fd3vva(r,v)c(r,v)vM(v)@2(r,v) g 0 • (A-13)

The first term on the left side of Eq. (A-13) is, by virture of (A-5), non-negative.

The other two terms combine to give

f d'rf d3v-VM(V)a(r:,v)*2 (r,v)[ 1-c (r,v) I(A-14)
which is always non-negative since c(r,v) < 1. However, Eq. (A-13) tells us that

the sum of these terms is non-positive. Thus

*(r,v) a 0 , (A-15)
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and the theorem is proved. We see that a reactor with no fuel can never be critical.

The uniqueness of the time-independent adjoint equation for the care of no

reproductipn can be proved in an entirely analogous fashion. This method is at

slight generalization of that used in Ref. (1) for proving uniqueness of the one-

speed equations.
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